.TH SLAPD-CONFIG 5 "RELEASEDATE" "OpenLDAP LDVERSION" .\" Copyright 1998-2021 The OpenLDAP Foundation All Rights Reserved. .\" Copying restrictions apply. See COPYRIGHT/LICENSE. .\" $OpenLDAP$ .SH NAME slapd\-config \- configuration backend to slapd .SH SYNOPSIS ETCDIR/slapd.d .SH DESCRIPTION The .B config backend manages all of the configuration information for the .BR slapd (8) daemon. This configuration information is also used by the SLAPD tools .BR slapacl (8), .BR slapadd (8), .BR slapauth (8), .BR slapcat (8), .BR slapdn (8), .BR slapindex (8), .BR slapmodify (8), and .BR slaptest (8). .LP The .B config backend is backward compatible with the older .BR slapd.conf (5) file but provides the ability to change the configuration dynamically at runtime. If slapd is run with only a .B slapd.conf file dynamic changes will be allowed but they will not persist across a server restart. Dynamic changes are only saved when slapd is running from a .B slapd.d configuration directory. .LP Unlike other backends, there can only be one instance of the .B config backend, and most of its structure is predefined. The root of the database is hardcoded to .B "cn=config" and this root entry contains global settings for slapd. Multiple child entries underneath the root entry are used to carry various other settings: .RS .TP .B cn=Module dynamically loaded modules .TP .B cn=Schema schema definitions .TP .B olcBackend=xxx backend-specific settings .TP .B olcDatabase=xxx database-specific settings .RE The .B cn=Module entries will only appear in configurations where slapd was built with support for dynamically loaded modules. There can be multiple entries, one for each configured module path. Within each entry there will be values recorded for each module loaded on a given path. These entries have no children. The .B cn=Schema entry contains all of the hardcoded schema elements. The children of this entry contain all user-defined schema elements. In schema that were loaded from include files, the child entry will be named after the include file from which the schema was loaded. Typically the first child in this subtree will be .BR cn=core,cn=schema,cn=config . .B olcBackend entries are for storing settings specific to a single backend type (and thus global to all database instances of that type). At present, only back-mdb implements any options of this type, so this setting is not needed for any other backends. .B olcDatabase entries store settings specific to a single database instance. These entries may have .B olcOverlay child entries corresponding to any overlays configured on the database. The olcDatabase and olcOverlay entries may also have miscellaneous child entries for other settings as needed. There are two special database entries that are predefined \- one is an entry for the config database itself, and the other is for the "frontend" database. Settings in the frontend database are inherited by the other databases, unless they are explicitly overridden in a specific database. .LP The specific configuration options available are discussed below in the Global Configuration Options, General Backend Options, and General Database Options. Options are set by defining LDAP attributes with specific values. In general the names of the LDAP attributes are the same as the corresponding .B slapd.conf keyword, with an "olc" prefix added on. The parser for many of these attributes is the same as used for parsing the slapd.conf keywords. As such, slapd.conf keywords that allow multiple items to be specified on one line, separated by whitespace, will allow multiple items to be specified in one attribute value. However, when reading the attribute via LDAP, the items will be returned as individual attribute values. Backend-specific options are discussed in the .B slapd\-(5) manual pages. Refer to the "OpenLDAP Administrator's Guide" for more details on configuring slapd. .SH GLOBAL CONFIGURATION OPTIONS Options described in this section apply to the server as a whole. Arguments that should be replaced by actual text are shown in brackets <>. These options may only be specified in the .B cn=config entry. This entry must have an objectClass of .BR olcGlobal . .TP .B olcAllows: Specify a set of features to allow (default none). .B bind_v2 allows acceptance of LDAPv2 bind requests. Note that .BR slapd (8) does not truly implement LDAPv2 (RFC 1777), now Historic (RFC 3494). .B bind_anon_cred allows anonymous bind when credentials are not empty (e.g. when DN is empty). .B bind_anon_dn allows unauthenticated (anonymous) bind when DN is not empty. .B update_anon allows unauthenticated (anonymous) update operations to be processed (subject to access controls and other administrative limits). .B proxy_authz_anon allows unauthenticated (anonymous) proxy authorization control to be processed (subject to access controls, authorization and other administrative limits). .TP .B olcArgsFile: The (absolute) name of a file that will hold the .B slapd server's command line (program name and options). .TP .B olcAttributeOptions: ... Define tagging attribute options or option tag/range prefixes. Options must not end with `\-', prefixes must end with `\-'. The `lang\-' prefix is predefined. If you use the .B olcAttributeOptions directive, `lang\-' will no longer be defined and you must specify it explicitly if you want it defined. An attribute description with a tagging option is a subtype of that attribute description without the option. Except for that, options defined this way have no special semantics. Prefixes defined this way work like the `lang\-' options: They define a prefix for tagging options starting with the prefix. That is, if you define the prefix `x\-foo\-', you can use the option `x\-foo\-bar'. Furthermore, in a search or compare, a prefix or range name (with a trailing `\-') matches all options starting with that name, as well as the option with the range name sans the trailing `\-'. That is, `x\-foo\-bar\-' matches `x\-foo\-bar' and `x\-foo\-bar\-baz'. RFC 4520 reserves options beginning with `x\-' for private experiments. Other options should be registered with IANA, see RFC 4520 section 3.5. OpenLDAP also has the `binary' option built in, but this is a transfer option, not a tagging option. .TP .B olcAuthIDRewrite: Used by the authentication framework to convert simple user names to an LDAP DN used for authorization purposes. Its purpose is analogous to that of .BR olcAuthzRegexp (see below). The .B rewrite\-rule is a set of rules analogous to those described in .BR slapo\-rwm (5) for data rewriting (after stripping the \fIrwm\-\fP prefix). .B olcAuthIDRewrite and .B olcAuthzRegexp should not be intermixed. .TP .B olcAuthzPolicy: Used to specify which rules to use for Proxy Authorization. Proxy authorization allows a client to authenticate to the server using one user's credentials, but specify a different identity to use for authorization and access control purposes. It essentially allows user A to login as user B, using user A's password. The .B none flag disables proxy authorization. This is the default setting. The .B from flag will use rules in the .I authzFrom attribute of the authorization DN. The .B to flag will use rules in the .I authzTo attribute of the authentication DN. The .B any flag, an alias for the deprecated value of .BR both , will allow any of the above, whatever succeeds first (checked in .BR to , .B from sequence. The .B all flag requires both authorizations to succeed. .LP .RS The rules are mechanisms to specify which identities are allowed to perform proxy authorization. The .I authzFrom attribute in an entry specifies which other users are allowed to proxy login to this entry. The .I authzTo attribute in an entry specifies which other users this user can authorize as. Use of .I authzTo rules can be easily abused if users are allowed to write arbitrary values to this attribute. In general the .I authzTo attribute must be protected with ACLs such that only privileged users can modify it. The value of .I authzFrom and .I authzTo describes an .B identity or a set of identities; it can take five forms: .RS .TP .B ldap:///??[]? .RE .RS .B dn[.]: .RE .RS .B u[.[]]: .RE .RS .B group[/objectClass[/attributeType]]: .RE .RS .B .RE .RS .B :={exact|onelevel|children|subtree|regex} .RE The first form is a valid LDAP .B URI where the .IR : , the .I and the .I portions must be absent, so that the search occurs locally on either .I authzFrom or .IR authzTo . .LP The second form is a .BR DN , with the optional style modifiers .IR exact , .IR onelevel , .IR children , and .I subtree for exact, onelevel, children and subtree matches, which cause .I to be normalized according to the DN normalization rules, or the special .I regex style, which causes the .I to be treated as a POSIX (''extended'') regular expression, as discussed in .BR regex (7) and/or .BR re_format (7). A pattern of .I * means any non-anonymous DN. .LP The third form is a SASL .BR id , with the optional fields .I and .I that allow to specify a SASL .BR mechanism , and eventually a SASL .BR realm , for those mechanisms that support one. The need to allow the specification of a mechanism is still debated, and users are strongly discouraged to rely on this possibility. .LP The fourth form is a group specification. It consists of the keyword .BR group , optionally followed by the specification of the group .B objectClass and .BR attributeType . The .B objectClass defaults to .IR groupOfNames . The .B attributeType defaults to .IR member . The group with DN .B is searched with base scope, filtered on the specified .BR objectClass . The values of the resulting .B attributeType are searched for the asserted DN. .LP The fifth form is provided for backwards compatibility. If no identity type is provided, i.e. only .B is present, an .I exact DN is assumed; as a consequence, .B is subjected to DN normalization. .LP Since the interpretation of .I authzFrom and .I authzTo can impact security, users are strongly encouraged to explicitly set the type of identity specification that is being used. A subset of these rules can be used as third arg in the .B olcAuthzRegexp statement (see below); significantly, the .IR URI , provided it results in exactly one entry, and the .I dn.exact: forms. .RE .TP .B olcAuthzRegexp: Used by the authentication framework to convert simple user names, such as provided by SASL subsystem, or extracted from certificates in case of cert-based SASL EXTERNAL, or provided within the RFC 4370 "proxied authorization" control, to an LDAP DN used for authorization purposes. Note that the resulting DN need not refer to an existing entry to be considered valid. When an authorization request is received from the SASL subsystem, the SASL .BR USERNAME , .BR REALM , and .B MECHANISM are taken, when available, and combined into a name of the form .RS .RS .TP .B UID=[[,CN=],CN=],CN=auth .RE This name is then compared against the .B match POSIX (''extended'') regular expression, and if the match is successful, the name is replaced with the .B replace string. If there are wildcard strings in the .B match regular expression that are enclosed in parenthesis, e.g. .RS .TP .B UID=([^,]*),CN=.* .RE then the portion of the name that matched the wildcard will be stored in the numbered placeholder variable $1. If there are other wildcard strings in parenthesis, the matching strings will be in $2, $3, etc. up to $9. The placeholders can then be used in the .B replace string, e.g. .RS .TP .B UID=$1,OU=Accounts,DC=example,DC=com .RE The replaced name can be either a DN, i.e. a string prefixed by "dn:", or an LDAP URI. If the latter, the server will use the URI to search its own database(s) and, if the search returns exactly one entry, the name is replaced by the DN of that entry. The LDAP URI must have no hostport, attrs, or extensions components, but the filter is mandatory, e.g. .RS .TP .B ldap:///OU=Accounts,DC=example,DC=com??one?(UID=$1) .RE The protocol portion of the URI must be strictly .BR ldap . Note that this search is subject to access controls. Specifically, the authentication identity must have "auth" access in the subject. Multiple .B olcAuthzRegexp values can be specified to allow for multiple matching and replacement patterns. The matching patterns are checked in the order they appear in the attribute, stopping at the first successful match. .\".B Caution: .\"Because the plus sign + is a character recognized by the regular expression engine, .\"and it will appear in names that include a REALM, be careful to escape the .\"plus sign with a backslash \\+ to remove the character's special meaning. .RE .TP .B olcConcurrency: Specify a desired level of concurrency. Provided to the underlying thread system as a hint. The default is not to provide any hint. This setting is only meaningful on some platforms where there is not a one to one correspondence between user threads and kernel threads. .TP .B olcConnMaxPending: Specify the maximum number of pending requests for an anonymous session. If requests are submitted faster than the server can process them, they will be queued up to this limit. If the limit is exceeded, the session is closed. The default is 100. .TP .B olcConnMaxPendingAuth: Specify the maximum number of pending requests for an authenticated session. The default is 1000. .TP .B olcDisallows: Specify a set of features to disallow (default none). .B bind_anon disables acceptance of anonymous bind requests. Note that this setting does not prohibit anonymous directory access (See "require authc"). .B bind_simple disables simple (bind) authentication. .B tls_2_anon disables forcing session to anonymous status (see also .BR tls_authc ) upon StartTLS operation receipt. .B tls_authc disallows the StartTLS operation if authenticated (see also .BR tls_2_anon ). .B proxy_authz_non_critical disables acceptance of the proxied authorization control (RFC4370) with criticality set to FALSE. .B dontusecopy_non_critical disables acceptance of the dontUseCopy control (a work in progress) with criticality set to FALSE. .TP .B olcGentleHUP: { TRUE | FALSE } A SIGHUP signal will only cause a 'gentle' shutdown-attempt: .B Slapd will stop listening for new connections, but will not close the connections to the current clients. Future write operations return unwilling-to-perform, though. Slapd terminates when all clients have closed their connections (if they ever do), or \- as before \- if it receives a SIGTERM signal. This can be useful if you wish to terminate the server and start a new .B slapd server .B with another database, without disrupting the currently active clients. The default is FALSE. You may wish to use .B olcIdleTimeout along with this option. .TP .B olcIdleTimeout: Specify the number of seconds to wait before forcibly closing an idle client connection. A setting of 0 disables this feature. The default is 0. You may also want to set the .B olcWriteTimeout option. .TP .B olcIndexHash64: { on | off } Use a 64 bit hash for indexing. The default is to use 32 bit hashes. These hashes are used for equality and substring indexing. The 64 bit version may be needed to avoid index collisions when the number of indexed values exceeds ~64 million. (Note that substring indexing generates multiple index values per actual attribute value.) Indices generated with 32 bit hashes are incompatible with the 64 bit version, and vice versa. Any existing databases must be fully reloaded when changing this setting. This directive is only supported on 64 bit CPUs. .TP .B olcIndexIntLen: Specify the key length for ordered integer indices. The most significant bytes of the binary integer will be used for index keys. The default value is 4, which provides exact indexing for 31 bit values. A floating point representation is used to index too large values. .TP .B olcIndexSubstrIfMaxlen: Specify the maximum length for subinitial and subfinal indices. Only this many characters of an attribute value will be processed by the indexing functions; any excess characters are ignored. The default is 4. .TP .B olcIndexSubstrIfMinlen: Specify the minimum length for subinitial and subfinal indices. An attribute value must have at least this many characters in order to be processed by the indexing functions. The default is 2. .TP .B olcIndexSubstrAnyLen: Specify the length used for subany indices. An attribute value must have at least this many characters in order to be processed. Attribute values longer than this length will be processed in segments of this length. The default is 4. The subany index will also be used in subinitial and subfinal index lookups when the filter string is longer than the .I olcIndexSubstrIfMaxlen value. .TP .B olcIndexSubstrAnyStep: Specify the steps used in subany index lookups. This value sets the offset for the segments of a filter string that are processed for a subany index lookup. The default is 2. For example, with the default values, a search using this filter "cn=*abcdefgh*" would generate index lookups for "abcd", "cdef", and "efgh". .LP Note: Indexing support depends on the particular backend in use. Also, changing these settings will generally require deleting any indices that depend on these parameters and recreating them with .BR slapindex (8). .TP .B olcListenerThreads: Specify the number of threads to use for the connection manager. The default is 1 and this is typically adequate for up to 16 CPU cores. The value should be set to a power of 2. .TP .B olcLocalSSF: Specifies the Security Strength Factor (SSF) to be given local LDAP sessions, such as those to the ldapi:// listener. For a description of SSF values, see .BR olcSaslSecProps 's .B minssf option description. The default is 71. .TP .B olcLogFile: Specify a file for recording slapd debug messages. By default these messages only go to stderr, are not recorded anywhere else, and are unrelated to messages exposed by the .B loglevel configuration parameter. Specifying a logfile copies messages to both stderr and the logfile. .TP .B olcLogLevel: [...] Specify the level at which debugging statements and operation statistics should be syslogged (currently logged to the .BR syslogd (8) LOG_LOCAL4 facility). They must be considered subsystems rather than increasingly verbose log levels. Some messages with higher priority are logged regardless of the configured loglevel as soon as any logging is configured. Log levels are additive, and available levels are: .RS .RS .PD 0 .TP .B 1 .B (0x1 trace) trace function calls .TP .B 2 .B (0x2 packets) debug packet handling .TP .B 4 .B (0x4 args) heavy trace debugging (function args) .TP .B 8 .B (0x8 conns) connection management .TP .B 16 .B (0x10 BER) print out packets sent and received .TP .B 32 .B (0x20 filter) search filter processing .TP .B 64 .B (0x40 config) configuration file processing .TP .B 128 .B (0x80 ACL) access control list processing .TP .B 256 .B (0x100 stats) connections, LDAP operations, results (recommended) .TP .B 512 .B (0x200 stats2) stats2 log entries sent .TP .B 1024 .B (0x400 shell) print communication with shell backends .TP .B 2048 .B (0x800 parse) entry parsing \".TP \".B 4096 \".B (0x1000 cache) \"caching (unused) \".TP \".B 8192 \".B (0x2000 index) \"data indexing (unused) .TP .B 16384 .B (0x4000 sync) LDAPSync replication .TP .B 32768 .B (0x8000 none) only messages that get logged whatever log level is set .PD .RE The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are shown between parenthesis, such that .LP .nf olcLogLevel: 129 olcLogLevel: 0x81 olcLogLevel: 128 1 olcLogLevel: 0x80 0x1 olcLogLevel: acl trace .fi .LP are equivalent. The keyword .B any can be used as a shortcut to enable logging at all levels (equivalent to \-1). The keyword .BR none , or the equivalent integer representation, causes those messages that are logged regardless of the configured olcLogLevel to be logged. In fact, if no olcLogLevel (or a 0 level) is defined, no logging occurs, so at least the .B none level is required to have high priority messages logged. Note that the .BR packets , .BR BER , and .B parse levels are only available as debug output on stderr, and are not sent to syslog. This setting defaults to \fBstats\fP. This level should usually also be included when using other loglevels, to help analyze the logs. .RE .TP .B olcMaxFilterDepth: Specify the maximum depth of nested filters in search requests. The default is 1000. .TP .B olcPasswordCryptSaltFormat: Specify the format of the salt passed to .BR crypt (3) when generating {CRYPT} passwords (see .BR olcPasswordHash ) during processing of LDAP Password Modify Extended Operations (RFC 3062). This string needs to be in .BR sprintf (3) format and may include one (and only one) %s conversion. This conversion will be substituted with a string of random characters from [A\-Za\-z0\-9./]. For example, "%.2s" provides a two character salt and "$1$%.8s" tells some versions of crypt(3) to use an MD5 algorithm and provides 8 random characters of salt. The default is "%s", which provides 31 characters of salt. .TP .B olcPidFile: The (absolute) name of a file that will hold the .B slapd server's process ID (see .BR getpid (2)). .TP .B olcPluginLogFile: The ( absolute ) name of a file that will contain log messages from .B SLAPI plugins. See .BR slapd.plugin (5) for details. .TP .B olcReferral: Specify the referral to pass back when .BR slapd (8) cannot find a local database to handle a request. If multiple values are specified, each url is provided. .TP .B olcReverseLookup: TRUE | FALSE Enable/disable client name unverified reverse lookup (default is .BR FALSE if compiled with \-\-enable\-rlookups). .TP .B olcRootDSE: Specify the name of an LDIF(5) file containing user defined attributes for the root DSE. These attributes are returned in addition to the attributes normally produced by slapd. The root DSE is an entry with information about the server and its capabilities, in operational attributes. It has the empty DN, and can be read with e.g.: .ti +4 ldapsearch \-x \-b "" \-s base "+" .br See RFC 4512 section 5.1 for details. .TP .B olcSaslAuxprops: [...] Specify which auxprop plugins to use for authentication lookups. The default is empty, which just uses slapd's internal support. Usually no other auxprop plugins are needed. .TP .B olcSaslAuxpropsDontUseCopy: [...] Specify which attribute(s) should be subject to the don't use copy control. This is necessary for some SASL mechanisms such as OTP to work in a replicated environment. The attribute "cmusaslsecretOTP" is the default value. .TP .B olcSaslAuxpropsDontUseCopyIgnore TRUE | FALSE Used to disable replication of the attribute(s) defined by olcSaslAuxpropsDontUseCopy and instead use a local value for the attribute. This allows the SASL mechanism to continue to work if the provider is offline. This can cause replication inconsistency. Defaults to FALSE. .TP .B olcSaslHost: Used to specify the fully qualified domain name used for SASL processing. .TP .B olcSaslRealm: Specify SASL realm. Default is empty. .TP .B olcSaslCbinding: none | tls-unique | tls-endpoint Specify the channel-binding type, see also LDAP_OPT_X_SASL_CBINDING. Default is none. .TP .B olcSaslSecProps: Used to specify Cyrus SASL security properties. The .B none flag (without any other properties) causes the flag properties default, "noanonymous,noplain", to be cleared. The .B noplain flag disables mechanisms susceptible to simple passive attacks. The .B noactive flag disables mechanisms susceptible to active attacks. The .B nodict flag disables mechanisms susceptible to passive dictionary attacks. The .B noanonymous flag disables mechanisms which support anonymous login. The .B forwardsec flag require forward secrecy between sessions. The .B passcred require mechanisms which pass client credentials (and allow mechanisms which can pass credentials to do so). The .B minssf= property specifies the minimum acceptable .I security strength factor as an integer approximate to effective key length used for encryption. 0 (zero) implies no protection, 1 implies integrity protection only, 128 allows RC4, Blowfish and other similar ciphers, 256 will require modern ciphers. The default is 0. The .B maxssf= property specifies the maximum acceptable .I security strength factor as an integer (see minssf description). The default is INT_MAX. The .B maxbufsize= property specifies the maximum security layer receive buffer size allowed. 0 disables security layers. The default is 65536. .TP .B olcServerID: [] Specify an integer ID from 0 to 4095 for this server. The ID may also be specified as a hexadecimal ID by prefixing the value with "0x". Non-zero IDs are required when using multi-provider replication and each provider must have a unique non-zero ID. Note that this requirement also applies to separate providers contributing to a glued set of databases. If the URL is provided, this directive may be specified multiple times, providing a complete list of participating servers and their IDs. The fully qualified hostname of each server should be used in the supplied URLs. The IDs are used in the "replica id" field of all CSNs generated by the specified server. The default value is zero, which is only valid for single provider replication. Example: .LP .nf olcServerID: 1 ldap://ldap1.example.com olcServerID: 2 ldap://ldap2.example.com .fi .TP .B olcSockbufMaxIncoming: Specify the maximum incoming LDAP PDU size for anonymous sessions. The default is 262143. .TP .B olcSockbufMaxIncomingAuth: Specify the maximum incoming LDAP PDU size for authenticated sessions. The default is 4194303. .TP .B olcTCPBuffer [listener=] [{read|write}=] Specify the size of the TCP buffer. A global value for both read and write TCP buffers related to any listener is defined, unless the listener is explicitly specified, or either the read or write qualifiers are used. See .BR tcp (7) for details. Note that some OS-es implement automatic TCP buffer tuning. .TP .B olcThreads: Specify the maximum size of the primary thread pool. The default is 16; the minimum value is 2. .TP .B olcThreadQueues: Specify the number of work queues to use for the primary thread pool. The default is 1 and this is typically adequate for up to 8 CPU cores. The value should not exceed the number of CPUs in the system. .TP .B olcToolThreads: Specify the maximum number of threads to use in tool mode. This should not be greater than the number of CPUs in the system. The default is 1. .TP .B olcWriteTimeout: Specify the number of seconds to wait before forcibly closing a connection with an outstanding write. This allows recovery from various network hang conditions. A setting of 0 disables this feature. The default is 0. .SH TLS OPTIONS If .B slapd is built with support for Transport Layer Security, there are more options you can specify. .TP .B olcTLSCipherSuite: Permits configuring what ciphers will be accepted and the preference order. should be a cipher specification for the TLS library in use (OpenSSL or GnuTLS). Example: .RS .RS .TP .I OpenSSL: olcTLSCipherSuite: HIGH:MEDIUM:+SSLv2 .TP .I GnuTLS: olcTLSCiphersuite: SECURE256:!AES-128-CBC .RE To check what ciphers a given spec selects in OpenSSL, use: .nf openssl ciphers \-v .fi With GnuTLS the available specs can be found in the manual page of .BR gnutls\-cli (1) (see the description of the option .BR \-\-priority ). In older versions of GnuTLS, where gnutls\-cli does not support the option \-\-priority, you can obtain the \(em more limited \(em list of ciphers by calling: .nf gnutls\-cli \-l .fi .RE .TP .B olcTLSCACertificateFile: Specifies the file that contains certificates for all of the Certificate Authorities that .B slapd will recognize. The certificate for the CA that signed the server certificate must be included among these certificates. If the signing CA was not a top-level (root) CA, certificates for the entire sequence of CA's from the signing CA to the top-level CA should be present. Multiple certificates are simply appended to the file; the order is not significant. .TP .B olcTLSCACertificatePath: Specifies the path of a directory that contains Certificate Authority certificates in separate individual files. Usually only one of this or the olcTLSCACertificateFile is defined. If both are specified, both locations will be used. .TP .B olcTLSCertificateFile: Specifies the file that contains the .B slapd server certificate. When using OpenSSL that file may also contain any number of intermediate certificates after the server certificate. .TP .B olcTLSCertificateKeyFile: Specifies the file that contains the .B slapd server private key that matches the certificate stored in the .B olcTLSCertificateFile file. If the private key is protected with a password, the password must be manually typed in when slapd starts. Usually the private key is not protected with a password, to allow slapd to start without manual intervention, so it is of critical importance that the file is protected carefully. .TP .B olcTLSDHParamFile: This directive specifies the file that contains parameters for Diffie-Hellman ephemeral key exchange. This is required in order to use a DSA certificate on the server, or an RSA certificate missing the "key encipherment" key usage. Note that setting this option may also enable Anonymous Diffie-Hellman key exchanges in certain non-default cipher suites. Anonymous key exchanges should generally be avoided since they provide no actual client or server authentication and provide no protection against man-in-the-middle attacks. You should append "!ADH" to your cipher suites to ensure that these suites are not used. .TP .B olcTLSECName: Specify the name of the curve(s) to use for Elliptic curve Diffie-Hellman ephemeral key exchange. This option is only used for OpenSSL. This option is not used with GnuTLS; the curves may be chosen in the GnuTLS ciphersuite specification. .TP .B olcTLSProtocolMin: [.] Specifies minimum SSL/TLS protocol version that will be negotiated. If the server doesn't support at least that version, the SSL handshake will fail. To require TLS 1.x or higher, set this option to 3.(x+1), e.g., .nf olcTLSProtocolMin: 3.2 .fi would require TLS 1.1. Specifying a minimum that is higher than that supported by the OpenLDAP implementation will result in it requiring the highest level that it does support. This directive is ignored with GnuTLS. .TP .B olcTLSRandFile: Specifies the file to obtain random bits from when /dev/[u]random is not available. Generally set to the name of the EGD/PRNGD socket. The environment variable RANDFILE can also be used to specify the filename. This directive is ignored with GnuTLS. .TP .B olcTLSVerifyClient: Specifies what checks to perform on client certificates in an incoming TLS session, if any. The .B can be specified as one of the following keywords: .RS .TP .B never This is the default. .B slapd will not ask the client for a certificate. .TP .B allow The client certificate is requested. If no certificate is provided, the session proceeds normally. If a bad certificate is provided, it will be ignored and the session proceeds normally. .TP .B try The client certificate is requested. If no certificate is provided, the session proceeds normally. If a bad certificate is provided, the session is immediately terminated. .TP .B demand | hard | true These keywords are all equivalent, for compatibility reasons. The client certificate is requested. If no certificate is provided, or a bad certificate is provided, the session is immediately terminated. Note that a valid client certificate is required in order to use the SASL EXTERNAL authentication mechanism with a TLS session. As such, a non-default .B olcTLSVerifyClient setting must be chosen to enable SASL EXTERNAL authentication. .RE .TP .B olcTLSCRLCheck: Specifies if the Certificate Revocation List (CRL) of the CA should be used to verify if the client certificates have not been revoked. This requires .B olcTLSCACertificatePath parameter to be set. This parameter is ignored with GnuTLS. .B can be specified as one of the following keywords: .RS .TP .B none No CRL checks are performed .TP .B peer Check the CRL of the peer certificate .TP .B all Check the CRL for a whole certificate chain .RE .TP .B olcTLSCRLFile: Specifies a file containing a Certificate Revocation List to be used for verifying that certificates have not been revoked. This parameter is only valid when using GnuTLS. .SH DYNAMIC MODULE OPTIONS If .B slapd is compiled with \-\-enable\-modules then the module-related entries will be available. These entries are named .B cn=module{x},cn=config and must have the olcModuleList objectClass. One entry should be created per .B olcModulePath. Normally the config engine generates the "{x}" index in the RDN automatically, so it can be omitted when initially loading these entries. .TP .B olcModuleLoad: [...] Specify the name of a dynamically loadable module to load and any additional arguments if supported by the module. The filename may be an absolute path name or a simple filename. Non-absolute names are searched for in the directories specified by the .B olcModulePath option. .TP .B olcModulePath: Specify a list of directories to search for loadable modules. Typically the path is colon-separated but this depends on the operating system. The default is MODULEDIR, which is where the standard OpenLDAP install will place its modules. .SH SCHEMA OPTIONS Schema definitions are created as entries in the .B cn=schema,cn=config subtree. These entries must have the olcSchemaConfig objectClass. As noted above, the actual .B cn=schema,cn=config entry is predefined and any values specified for it are ignored. .HP .hy 0 .B olcAttributetypes: "(\ \ [NAME\ ]\ [DESC\ ]\ [OBSOLETE]\ [SUP\ ]\ [EQUALITY\ ]\ [ORDERING\ ]\ [SUBSTR\ ]\ [SYNTAX\ ]\ [SINGLE\-VALUE]\ [COLLECTIVE]\ [NO\-USER\-MODIFICATION]\ [USAGE\ ]\ )" .RS Specify an attribute type using the LDAPv3 syntax defined in RFC 4512. The slapd parser extends the RFC 4512 definition by allowing string forms as well as numeric OIDs to be used for the attribute OID and attribute syntax OID. (See the .B olcObjectIdentifier description.) .RE .HP .hy 0 .B olcDitContentRules: "(\ \ [NAME\ ]\ [DESC\ ]\ [OBSOLETE]\ [AUX\ ]\ [MUST\ ]\ [MAY\ ]\ [NOT\ ]\ )" .RS Specify an DIT Content Rule using the LDAPv3 syntax defined in RFC 4512. The slapd parser extends the RFC 4512 definition by allowing string forms as well as numeric OIDs to be used for the attribute OID and attribute syntax OID. (See the .B olcObjectIdentifier description.) .RE .HP .hy 0 .B olcLdapSyntaxes "(\ \ [DESC\ ]\ [X\-SUBST ]\ )" .RS Specify an LDAP syntax using the LDAPv3 syntax defined in RFC 4512. The slapd parser extends the RFC 4512 definition by allowing string forms as well as numeric OIDs to be used for the syntax OID. (See the .B objectidentifier description.) The slapd parser also honors the .B X\-SUBST extension (an OpenLDAP-specific extension), which allows one to use the .B olcLdapSyntaxes attribute to define a non-implemented syntax along with another syntax, the extension value .IR substitute-syntax , as its temporary replacement. The .I substitute-syntax must be defined. This allows one to define attribute types that make use of non-implemented syntaxes using the correct syntax OID. Unless .B X\-SUBST is used, this configuration statement would result in an error, since no handlers would be associated to the resulting syntax structure. .RE .HP .hy 0 .B olcObjectClasses: "(\ \ [NAME\ ]\ [DESC\ ]\ [OBSOLETE]\ [SUP\ ]\ [{ ABSTRACT | STRUCTURAL | AUXILIARY }]\ [MUST\ ] [MAY\ ] )" .RS Specify an objectclass using the LDAPv3 syntax defined in RFC 4512. The slapd parser extends the RFC 4512 definition by allowing string forms as well as numeric OIDs to be used for the object class OID. (See the .B olcObjectIdentifier description.) Object classes are "STRUCTURAL" by default. .RE .TP .B olcObjectIdentifier: "{ | [:] }" Define a string name that equates to the given OID. The string can be used in place of the numeric OID in objectclass and attribute definitions. The name can also be used with a suffix of the form ":xx" in which case the value "oid.xx" will be used. .SH GENERAL BACKEND OPTIONS Options in these entries only apply to the configuration of a single type of backend. All backends may support this class of options, but currently only back-mdb does. The entry must be named .B olcBackend=,cn=config and must have the olcBackendConfig objectClass. should be one of .BR asyncmeta , .BR config , .BR dnssrv , .BR ldap , .BR ldif , .BR mdb , .BR meta , .BR monitor , .BR ndb , .BR null , .BR passwd , .BR perl , .BR relay , .BR sock , .BR sql , or .BR wt . At present, only back-mdb implements any options of this type, so this entry should not be used for any other backends. .SH DATABASE OPTIONS Database options are set in entries named .B olcDatabase={x},cn=config and must have the olcDatabaseConfig objectClass. Normally the config engine generates the "{x}" index in the RDN automatically, so it can be omitted when initially loading these entries. The special frontend database is always numbered "{\-1}" and the config database is always numbered "{0}". .SH GLOBAL DATABASE OPTIONS Options in this section may be set in the special "frontend" database and inherited in all the other databases. These options may be altered by further settings in each specific database. The frontend entry must be named .B olcDatabase=frontend,cn=config and must have the olcFrontendConfig objectClass. .TP .B olcAccess: to "[ by ]+" Grant access (specified by ) to a set of entries and/or attributes (specified by ) by one or more requestors (specified by ). If no access controls are present, the default policy allows anyone and everyone to read anything but restricts updates to rootdn. (e.g., "olcAccess: to * by * read"). See .BR slapd.access (5) and the "OpenLDAP Administrator's Guide" for details. Access controls set in the frontend are appended to any access controls set on the specific databases. The rootdn of a database can always read and write EVERYTHING in that database. Extra special care must be taken with the access controls on the config database. Unlike other databases, the default policy for the config database is to only allow access to the rootdn. Regular users should not have read access, and write access should be granted very carefully to privileged administrators. .TP .B olcDefaultSearchBase: Specify a default search base to use when client submits a non-base search request with an empty base DN. Base scoped search requests with an empty base DN are not affected. This setting is only allowed in the frontend entry. .TP .B olcExtraAttrs: Lists what attributes need to be added to search requests. Local storage backends return the entire entry to the frontend. The frontend takes care of only returning the requested attributes that are allowed by ACLs. However, features like access checking and so may need specific attributes that are not automatically returned by remote storage backends, like proxy backends and so on. .B is an attribute that is needed for internal purposes and thus always needs to be collected, even when not explicitly requested by clients. This attribute is multi-valued. .TP .B olcPasswordHash: [...] This option configures one or more hashes to be used in generation of user passwords stored in the userPassword attribute during processing of LDAP Password Modify Extended Operations (RFC 3062). The must be one of .BR {SSHA} , .BR {SHA} , .BR {SMD5} , .BR {MD5} , .BR {CRYPT} , and .BR {CLEARTEXT} . The default is .BR {SSHA} . .B {SHA} and .B {SSHA} use the SHA-1 algorithm (FIPS 160-1), the latter with a seed. .B {MD5} and .B {SMD5} use the MD5 algorithm (RFC 1321), the latter with a seed. .B {CRYPT} uses the .BR crypt (3). .B {CLEARTEXT} indicates that the new password should be added to userPassword as clear text. Note that this option does not alter the normal user applications handling of userPassword during LDAP Add, Modify, or other LDAP operations. This setting is only allowed in the frontend entry. .TP .B olcReadOnly: TRUE | FALSE This option puts the database into "read-only" mode. Any attempts to modify the database will return an "unwilling to perform" error. By default, olcReadOnly is FALSE. Note that when this option is set TRUE on the frontend, it cannot be reset without restarting the server, since further writes to the config database will be rejected. .TP .B olcRequires: Specify a set of conditions to require (default none). The directive may be specified globally and/or per-database; databases inherit global conditions, so per-database specifications are additive. .B bind requires bind operation prior to directory operations. .B LDAPv3 requires session to be using LDAP version 3. .B authc requires authentication prior to directory operations. .B SASL requires SASL authentication prior to directory operations. .B strong requires strong authentication prior to directory operations. The strong keyword allows protected "simple" authentication as well as SASL authentication. .B none may be used to require no conditions (useful to clear out globally set conditions within a particular database); it must occur first in the list of conditions. .TP .B olcRestrict: Specify a list of operations that are restricted. Restrictions on a specific database override any frontend setting. Operations can be any of .BR add , .BR bind , .BR compare , .BR delete , .BR extended[=] , .BR modify , .BR rename , .BR search , or the special pseudo-operations .B read and .BR write , which respectively summarize read and write operations. The use of .I restrict write is equivalent to .I olcReadOnly: TRUE (see above). The .B extended keyword allows one to indicate the OID of the specific operation to be restricted. .TP .B olcSchemaDN: Specify the distinguished name for the subschema subentry that controls the entries on this server. The default is "cn=Subschema". .TP .B olcSecurity: Specify a set of security strength factors (separated by white space) to require (see .BR olcSaslSecprops 's .B minssf option for a description of security strength factors). The directive may be specified globally and/or per-database. .B ssf= specifies the overall security strength factor. .B transport= specifies the transport security strength factor. .B tls= specifies the TLS security strength factor. .B sasl= specifies the SASL security strength factor. .B update_ssf= specifies the overall security strength factor to require for directory updates. .B update_transport= specifies the transport security strength factor to require for directory updates. .B update_tls= specifies the TLS security strength factor to require for directory updates. .B update_sasl= specifies the SASL security strength factor to require for directory updates. .B simple_bind= specifies the security strength factor required for .I simple username/password authentication. Note that the .B transport factor is measure of security provided by the underlying transport, e.g. ldapi:// (and eventually IPSEC). It is not normally used. .TP .B olcSizeLimit: {|unlimited} .TP .B olcSizeLimit: size[.{soft|hard}]= [...] Specify the maximum number of entries to return from a search operation. The default size limit is 500. Use .B unlimited to specify no limits. The second format allows a fine grain setting of the size limits. If no special qualifiers are specified, both soft and hard limits are set. Extra args can be added in the same value. Additional qualifiers are available; see .BR olcLimits for an explanation of all of the different flags. .TP .B olcSortVals: [...] Specify a list of multi-valued attributes whose values will always be maintained in sorted order. Using this option will allow Modify, Compare, and filter evaluations on these attributes to be performed more efficiently. The resulting sort order depends on the attributes' syntax and matching rules and may not correspond to lexical order or any other recognizable order. This setting is only allowed in the frontend entry. .TP .B olcTimeLimit: {|unlimited} .TP .B olcTimeLimit: time[.{soft|hard}]= [...] Specify the maximum number of seconds (in real time) .B slapd will spend answering a search request. The default time limit is 3600. Use .B unlimited to specify no limits. The second format allows a fine grain setting of the time limits. Extra args can be added in the same value. See .BR olcLimits for an explanation of the different flags. .SH GENERAL DATABASE OPTIONS Options in this section only apply to the specific database for which they are defined. They are supported by every type of backend. All of the Global Database Options may also be used here. .TP .B olcAddContentAcl: TRUE | FALSE Controls whether Add operations will perform ACL checks on the content of the entry being added. This check is off by default. See the .BR slapd.access (5) manual page for more details on ACL requirements for Add operations. .TP .B olcHidden: TRUE | FALSE Controls whether the database will be used to answer queries. A database that is hidden will never be selected to answer any queries, and any suffix configured on the database will be ignored in checks for conflicts with other databases. By default, olcHidden is FALSE. .TP .B olcLastMod: TRUE | FALSE Controls whether .B slapd will automatically maintain the modifiersName, modifyTimestamp, creatorsName, and createTimestamp attributes for entries. It also controls the entryCSN and entryUUID attributes, which are needed by the syncrepl provider. By default, olcLastMod is TRUE. .TP .B olcLastBind: TRUE | FALSE Controls whether .B slapd will automatically maintain the pwdLastSuccess attribute for entries. By default, olcLastBind is FALSE. .TP .B olcLimits: [ [...]] Specify time and size limits based on the operation's initiator or base DN. The argument .B can be any of .RS .RS .TP anonymous | users | [=] | group[/oc[/at]]= .RE with .RS .TP ::= dn[.][.