/* $NetBSD: test.c,v 1.43.2.1 2022/08/29 16:04:26 martin Exp $ */ /* * test(1); version 7-like -- author Erik Baalbergen * modified by Eric Gisin to be used as built-in. * modified by Arnold Robbins to add SVR3 compatibility * (-x -c -b -p -u -g -k) plus Korn's -L -nt -ot -ef and new -S (socket). * modified by J.T. Conklin for NetBSD. * * This program is in the Public Domain. */ #include #ifndef lint __RCSID("$NetBSD: test.c,v 1.43.2.1 2022/08/29 16:04:26 martin Exp $"); #endif #include #include #include #include #include #include #include #include #include #include #include #include /* test(1) accepts the following grammar: oexpr ::= aexpr | aexpr "-o" oexpr ; aexpr ::= nexpr | nexpr "-a" aexpr ; nexpr ::= primary | "!" primary primary ::= unary-operator operand | operand binary-operator operand | operand | "(" oexpr ")" ; unary-operator ::= "-r"|"-w"|"-x"|"-f"|"-d"|"-c"|"-b"|"-p"| "-u"|"-g"|"-k"|"-s"|"-t"|"-z"|"-n"|"-o"|"-O"|"-G"|"-L"|"-S"; binary-operator ::= "="|"!="|"-eq"|"-ne"|"-ge"|"-gt"|"-le"|"-lt"| "-nt"|"-ot"|"-ef"; operand ::= */ enum token { EOI, FILRD, FILWR, FILEX, FILEXIST, FILREG, FILDIR, FILCDEV, FILBDEV, FILFIFO, FILSOCK, FILSYM, FILGZ, FILTT, FILSUID, FILSGID, FILSTCK, FILNT, FILOT, FILEQ, FILUID, FILGID, STREZ, STRNZ, STREQ, STRNE, STRLT, STRGT, INTEQ, INTNE, INTGE, INTGT, INTLE, INTLT, UNOT, BAND, BOR, LPAREN, RPAREN, OPERAND }; enum token_types { UNOP, BINOP #ifndef SMALL , BUNOP, BBINOP, PAREN #endif }; struct t_op { const char *op_text; short op_num, op_type; }; static const struct t_op cop[] = { #ifndef SMALL {"!", UNOT, BUNOP}, {"(", LPAREN, PAREN}, {")", RPAREN, PAREN}, #endif {"<", STRLT, BINOP}, {"=", STREQ, BINOP}, {">", STRGT, BINOP}, }; static const struct t_op cop2[] = { {"!=", STRNE, BINOP}, }; static const struct t_op mop3[] = { {"ef", FILEQ, BINOP}, {"eq", INTEQ, BINOP}, {"ge", INTGE, BINOP}, {"gt", INTGT, BINOP}, {"le", INTLE, BINOP}, {"lt", INTLT, BINOP}, {"ne", INTNE, BINOP}, {"nt", FILNT, BINOP}, {"ot", FILOT, BINOP}, }; static const struct t_op mop2[] = { {"G", FILGID, UNOP}, {"L", FILSYM, UNOP}, {"O", FILUID, UNOP}, {"S", FILSOCK,UNOP}, #ifndef SMALL {"a", BAND, BBINOP}, #endif {"b", FILBDEV,UNOP}, {"c", FILCDEV,UNOP}, {"d", FILDIR, UNOP}, {"e", FILEXIST,UNOP}, {"f", FILREG, UNOP}, {"g", FILSGID,UNOP}, {"h", FILSYM, UNOP}, /* for backwards compat */ {"k", FILSTCK,UNOP}, {"n", STRNZ, UNOP}, #ifndef SMALL {"o", BOR, BBINOP}, #endif {"p", FILFIFO,UNOP}, {"r", FILRD, UNOP}, {"s", FILGZ, UNOP}, {"t", FILTT, UNOP}, {"u", FILSUID,UNOP}, {"w", FILWR, UNOP}, {"x", FILEX, UNOP}, {"z", STREZ, UNOP}, }; #ifndef SMALL static char **t_wp; static struct t_op const *t_wp_op; #endif #ifndef SMALL __dead static void syntax(const char *, const char *); static int oexpr(enum token); static int aexpr(enum token); static int nexpr(enum token); static int primary(enum token); static int binop(void); static enum token t_lex(char *); static int isoperand(void); #endif static struct t_op const *findop(const char *); static int perform_unop(enum token, const char *); static int perform_binop(enum token, const char *, const char *); static int test_access(struct stat *, mode_t); static int filstat(const char *, enum token); static long long getn(const char *); static int newerf(const char *, const char *); static int olderf(const char *, const char *); static int equalf(const char *, const char *); static int one_arg(const char *); static int two_arg(const char *, const char *); static int three_arg(const char *, const char *, const char *); static int four_arg(const char *, const char *, const char *, const char *); #if defined(SHELL) extern void error(const char *, ...) __dead __printflike(1, 2); extern void *ckmalloc(size_t); #else static void error(const char *, ...) __dead __printflike(1, 2); static void error(const char *msg, ...) { va_list ap; va_start(ap, msg); verrx(2, msg, ap); /*NOTREACHED*/ va_end(ap); } static void *ckmalloc(size_t); static void * ckmalloc(size_t nbytes) { void *p = malloc(nbytes); if (!p) error("Not enough memory!"); return p; } #endif #ifdef SHELL int testcmd(int, char **); int testcmd(int argc, char **argv) #else int main(int argc, char *argv[]) #endif { int res; const char *argv0; #ifdef SHELL argv0 = argv[0]; #else setprogname(argv[0]); (void)setlocale(LC_ALL, ""); argv0 = getprogname(); #endif if (strcmp(argv0, "[") == 0) { if (strcmp(argv[--argc], "]")) error("missing ]"); argv[argc] = NULL; } /* * POSIX defines operations of test for up to 4 args * (depending upon what the args are in some cases) * * arg count does not include the command name, (but argc does) * nor the closing ']' when the command was '[' (removed above) * * None of the following allow -a or -o as an operator (those * only apply in the evaluation of unspeicified expressions) * * Note that the xxx_arg() functions return "shell" true/false * (0 == true, 1 == false) or -1 for "unspecified case" * * Other functions return C true/false (1 == true, 0 == false) * * Hence we simply return the result from xxx_arg(), but * invert the result of oexpr() below before returning it. */ switch (argc - 1) { case -1: /* impossible, but never mind */ case 0: /* test $a where a='' false */ return 1; case 1: /* test "$a" */ return one_arg(argv[1]); /* always works */ case 2: /* test op "$a" */ res = two_arg(argv[1], argv[2]); if (res >= 0) return res; break; case 3: /* test "$a" op "$b" or test ! op "$a" */ res = three_arg(argv[1], argv[2], argv[3]); if (res >= 0) return res; break; case 4: /* test ! "$a" op "$b" or test ( op "$a" ) */ res = four_arg(argv[1], argv[2], argv[3], argv[4]); if (res >= 0) return res; break; default: break; } /* * All other cases produce unspecified results * (including cases above with small arg counts where the * args are not what was expected to be seen) * * We fall back to the old method, of attempting to parse * the expr (highly ambiguous as there is no distinction between * operators and operands that happen to look like operators) */ #ifdef SMALL error("unsupported expression when built with -DSMALL"); #else t_wp = &argv[1]; res = !oexpr(t_lex(*t_wp)); if (*t_wp != NULL && *++t_wp != NULL) syntax(*t_wp, "unexpected operator"); return res; #endif } #ifndef SMALL static void syntax(const char *op, const char *msg) { if (op && *op) error("%s: %s", op, msg); else error("%s", msg); } #endif static int one_arg(const char *arg) { /* * True (exit 0, so false...) if arg is not a null string * False (so exit 1, so true) if it is. */ return *arg == '\0'; } static int two_arg(const char *a1, const char *a2) { static struct t_op const *op; if (a1[0] == '!' && a1[1] == 0) return !one_arg(a2); op = findop(a1); if (op != NULL && op->op_type == UNOP) return !perform_unop(op->op_num, a2); #ifndef TINY /* * an extension, but as we've entered the realm of the unspecified * we're allowed... test ( $a ) where a='' */ if (a1[0] == '(' && a2[0] == ')' && (a1[1] | a2[1]) == 0) return 1; #endif return -1; } static int three_arg(const char *a1, const char *a2, const char *a3) { static struct t_op const *op; int res; op = findop(a2); if (op != NULL && op->op_type == BINOP) return !perform_binop(op->op_num, a1, a3); if (a1[1] != '\0') return -1; if (a1[0] == '!') { res = two_arg(a2, a3); if (res >= 0) res = !res; return res; } #ifndef TINY if (a1[0] == '(' && a3[0] == ')' && a3[1] == '\0') return one_arg(a2); #endif return -1; } static int four_arg(const char *a1, const char *a2, const char *a3, const char *a4) { int res; if (a1[1] != '\0') return -1; if (a1[0] == '!') { res = three_arg(a2, a3, a4); if (res >= 0) res = !res; return res; } #ifndef TINY if (a1[0] == '(' && a4[0] == ')' && a4[1] == '\0') return two_arg(a2, a3); #endif return -1; } #ifndef SMALL static int oexpr(enum token n) { int res; res = aexpr(n); if (*t_wp == NULL) return res; if (t_lex(*++t_wp) == BOR) return oexpr(t_lex(*++t_wp)) || res; t_wp--; return res; } static int aexpr(enum token n) { int res; res = nexpr(n); if (*t_wp == NULL) return res; if (t_lex(*++t_wp) == BAND) return aexpr(t_lex(*++t_wp)) && res; t_wp--; return res; } static int nexpr(enum token n) { if (n == UNOT) return !nexpr(t_lex(*++t_wp)); return primary(n); } static int primary(enum token n) { enum token nn; int res; if (n == EOI) return 0; /* missing expression */ if (n == LPAREN) { if ((nn = t_lex(*++t_wp)) == RPAREN) return 0; /* missing expression */ res = oexpr(nn); if (t_lex(*++t_wp) != RPAREN) syntax(NULL, "closing paren expected"); return res; } if (t_wp_op && t_wp_op->op_type == UNOP) { /* unary expression */ if (*++t_wp == NULL) syntax(t_wp_op->op_text, "argument expected"); return perform_unop(n, *t_wp); } if (t_lex(t_wp[1]), t_wp_op && t_wp_op->op_type == BINOP) { return binop(); } return strlen(*t_wp) > 0; } #endif /* !SMALL */ static int perform_unop(enum token n, const char *opnd) { switch (n) { case STREZ: return strlen(opnd) == 0; case STRNZ: return strlen(opnd) != 0; case FILTT: return isatty((int)getn(opnd)); default: return filstat(opnd, n); } } #ifndef SMALL static int binop(void) { const char *opnd1, *opnd2; struct t_op const *op; opnd1 = *t_wp; (void) t_lex(*++t_wp); op = t_wp_op; if ((opnd2 = *++t_wp) == NULL) syntax(op->op_text, "argument expected"); return perform_binop(op->op_num, opnd1, opnd2); } #endif static int perform_binop(enum token op_num, const char *opnd1, const char *opnd2) { switch (op_num) { case STREQ: return strcmp(opnd1, opnd2) == 0; case STRNE: return strcmp(opnd1, opnd2) != 0; case STRLT: return strcmp(opnd1, opnd2) < 0; case STRGT: return strcmp(opnd1, opnd2) > 0; case INTEQ: return getn(opnd1) == getn(opnd2); case INTNE: return getn(opnd1) != getn(opnd2); case INTGE: return getn(opnd1) >= getn(opnd2); case INTGT: return getn(opnd1) > getn(opnd2); case INTLE: return getn(opnd1) <= getn(opnd2); case INTLT: return getn(opnd1) < getn(opnd2); case FILNT: return newerf(opnd1, opnd2); case FILOT: return olderf(opnd1, opnd2); case FILEQ: return equalf(opnd1, opnd2); default: abort(); /* NOTREACHED */ } } /* * The manual, and IEEE POSIX 1003.2, suggests this should check the mode bits, * not use access(): * * True shall indicate only that the write flag is on. The file is not * writable on a read-only file system even if this test indicates true. * * Unfortunately IEEE POSIX 1003.1-2001, as quoted in SuSv3, says only: * * True shall indicate that permission to read from file will be granted, * as defined in "File Read, Write, and Creation". * * and that section says: * * When a file is to be read or written, the file shall be opened with an * access mode corresponding to the operation to be performed. If file * access permissions deny access, the requested operation shall fail. * * and of course access permissions are described as one might expect: * * * If a process has the appropriate privilege: * * * If read, write, or directory search permission is requested, * access shall be granted. * * * If execute permission is requested, access shall be granted if * execute permission is granted to at least one user by the file * permission bits or by an alternate access control mechanism; * otherwise, access shall be denied. * * * Otherwise: * * * The file permission bits of a file contain read, write, and * execute/search permissions for the file owner class, file group * class, and file other class. * * * Access shall be granted if an alternate access control mechanism * is not enabled and the requested access permission bit is set for * the class (file owner class, file group class, or file other class) * to which the process belongs, or if an alternate access control * mechanism is enabled and it allows the requested access; otherwise, * access shall be denied. * * and when I first read this I thought: surely we can't go about using * open(O_WRONLY) to try this test! However the POSIX 1003.1-2001 Rationale * section for test does in fact say: * * On historical BSD systems, test -w directory always returned false * because test tried to open the directory for writing, which always * fails. * * and indeed this is in fact true for Seventh Edition UNIX, UNIX 32V, and UNIX * System III, and thus presumably also for BSD up to and including 4.3. * * Secondly I remembered why using open() and/or access() are bogus. They * don't work right for detecting read and write permissions bits when called * by root. * * Interestingly the 'test' in 4.4BSD was closer to correct (as per * 1003.2-1992) and it was implemented efficiently with stat() instead of * open(). * * This was apparently broken in NetBSD around about 1994/06/30 when the old * 4.4BSD implementation was replaced with a (arguably much better coded) * implementation derived from pdksh. * * Note that modern pdksh is yet different again, but still not correct, at * least not w.r.t. 1003.2-1992. * * As I think more about it and read more of the related IEEE docs I don't like * that wording about 'test -r' and 'test -w' in 1003.1-2001 at all. I very * much prefer the original wording in 1003.2-1992. It is much more useful, * and so that's what I've implemented. * * (Note that a strictly conforming implementation of 1003.1-2001 is in fact * totally useless for the case in question since its 'test -w' and 'test -r' * can never fail for root for any existing files, i.e. files for which 'test * -e' succeeds.) * * The rationale for 1003.1-2001 suggests that the wording was "clarified" in * 1003.1-2001 to align with the 1003.2b draft. 1003.2b Draft 12 (July 1999), * which is the latest copy I have, does carry the same suggested wording as is * in 1003.1-2001, with its rationale saying: * * This change is a clarification and is the result of interpretation * request PASC 1003.2-92 #23 submitted for IEEE Std 1003.2-1992. * * That interpretation can be found here: * * http://www.pasc.org/interps/unofficial/db/p1003.2/pasc-1003.2-23.html * * Not terribly helpful, unfortunately. I wonder who that fence sitter was. * * Worse, IMVNSHO, I think the authors of 1003.2b-D12 have mis-interpreted the * PASC interpretation and appear to be gone against at least one widely used * implementation (namely 4.4BSD). The problem is that for file access by root * this means that if test '-r' and '-w' are to behave as if open() were called * then there's no way for a shell script running as root to check if a file * has certain access bits set other than by the grotty means of interpreting * the output of 'ls -l'. This was widely considered to be a bug in V7's * "test" and is, I believe, one of the reasons why direct use of access() was * avoided in some more recent implementations! * * I have always interpreted '-r' to match '-w' and '-x' as per the original * wording in 1003.2-1992, not the other way around. I think 1003.2b goes much * too far the wrong way without any valid rationale and that it's best if we * stick with 1003.2-1992 and test the flags, and not mimic the behaviour of * open() since we already know very well how it will work -- existance of the * file is all that matters to open() for root. * * Unfortunately the SVID is no help at all (which is, I guess, partly why * we're in this mess in the first place :-). * * The SysV implementation (at least in the 'test' builtin in /bin/sh) does use * access(name, 2) even though it also goes to much greater lengths for '-x' * matching the 1003.2-1992 definition (which is no doubt where that definition * came from). * * The ksh93 implementation uses access() for '-r' and '-w' if * (euid==uid&&egid==gid), but uses st_mode for '-x' iff running as root. * i.e. it does strictly conform to 1003.1-2001 (and presumably 1003.2b). */ static int test_access(struct stat *sp, mode_t stmode) { gid_t *groups; register int n; uid_t euid; int maxgroups; /* * I suppose we could use access() if not running as root and if we are * running with ((euid == uid) && (egid == gid)), but we've already * done the stat() so we might as well just test the permissions * directly instead of asking the kernel to do it.... */ euid = geteuid(); if (euid == 0) /* any bit is good enough */ stmode = (stmode << 6) | (stmode << 3) | stmode; else if (sp->st_uid == euid) stmode <<= 6; else if (sp->st_gid == getegid()) stmode <<= 3; else { /* XXX stolen almost verbatim from ksh93.... */ /* on some systems you can be in several groups */ if ((maxgroups = getgroups(0, NULL)) <= 0) maxgroups = NGROUPS_MAX; /* pre-POSIX system? */ groups = ckmalloc((maxgroups + 1) * sizeof(gid_t)); n = getgroups(maxgroups, groups); while (--n >= 0) { if (groups[n] == sp->st_gid) { stmode <<= 3; break; } } free(groups); } return sp->st_mode & stmode; } static int filstat(const char *nm, enum token mode) { struct stat s; if (mode == FILSYM ? lstat(nm, &s) : stat(nm, &s)) return 0; switch (mode) { case FILRD: return test_access(&s, S_IROTH); case FILWR: return test_access(&s, S_IWOTH); case FILEX: return test_access(&s, S_IXOTH); case FILEXIST: return 1; /* the successful lstat()/stat() is good enough */ case FILREG: return S_ISREG(s.st_mode); case FILDIR: return S_ISDIR(s.st_mode); case FILCDEV: return S_ISCHR(s.st_mode); case FILBDEV: return S_ISBLK(s.st_mode); case FILFIFO: return S_ISFIFO(s.st_mode); case FILSOCK: return S_ISSOCK(s.st_mode); case FILSYM: return S_ISLNK(s.st_mode); case FILSUID: return (s.st_mode & S_ISUID) != 0; case FILSGID: return (s.st_mode & S_ISGID) != 0; case FILSTCK: return (s.st_mode & S_ISVTX) != 0; case FILGZ: return s.st_size > (off_t)0; case FILUID: return s.st_uid == geteuid(); case FILGID: return s.st_gid == getegid(); default: return 1; } } #define VTOC(x) (const unsigned char *)((const struct t_op *)x)->op_text static int compare1(const void *va, const void *vb) { const unsigned char *a = va; const unsigned char *b = VTOC(vb); return a[0] - b[0]; } static int compare2(const void *va, const void *vb) { const unsigned char *a = va; const unsigned char *b = VTOC(vb); int z = a[0] - b[0]; return z ? z : (a[1] - b[1]); } static struct t_op const * findop(const char *s) { if (s[0] == '-') { if (s[1] == '\0') return NULL; if (s[2] == '\0') return bsearch(s + 1, mop2, __arraycount(mop2), sizeof(*mop2), compare1); else if (s[3] != '\0') return NULL; else return bsearch(s + 1, mop3, __arraycount(mop3), sizeof(*mop3), compare2); } else { if (s[1] == '\0') return bsearch(s, cop, __arraycount(cop), sizeof(*cop), compare1); else if (strcmp(s, cop2[0].op_text) == 0) return cop2; else return NULL; } } #ifndef SMALL static enum token t_lex(char *s) { struct t_op const *op; if (s == NULL) { t_wp_op = NULL; return EOI; } if ((op = findop(s)) != NULL) { if (!((op->op_type == UNOP && isoperand()) || (op->op_num == LPAREN && *(t_wp+1) == 0))) { t_wp_op = op; return op->op_num; } } t_wp_op = NULL; return OPERAND; } static int isoperand(void) { struct t_op const *op; char *s, *t; if ((s = *(t_wp+1)) == 0) return 1; if ((t = *(t_wp+2)) == 0) return 0; if ((op = findop(s)) != NULL) return op->op_type == BINOP && (t[0] != ')' || t[1] != '\0'); return 0; } #endif /* atoi with error detection */ static long long getn(const char *s) { char *p; long long r; errno = 0; r = strtoll(s, &p, 10); if (errno != 0) if (errno == ERANGE && (r == LLONG_MAX || r == LLONG_MIN)) error("%s: out of range", s); if (p != s) while (isspace((unsigned char)*p)) p++; if (*p || p == s) error("'%s': bad number", s); return r; } static int newerf(const char *f1, const char *f2) { struct stat b1, b2; return (stat(f1, &b1) == 0 && stat(f2, &b2) == 0 && timespeccmp(&b1.st_mtim, &b2.st_mtim, >)); } static int olderf(const char *f1, const char *f2) { struct stat b1, b2; return (stat(f1, &b1) == 0 && stat(f2, &b2) == 0 && timespeccmp(&b1.st_mtim, &b2.st_mtim, <)); } static int equalf(const char *f1, const char *f2) { struct stat b1, b2; return (stat(f1, &b1) == 0 && stat(f2, &b2) == 0 && b1.st_dev == b2.st_dev && b1.st_ino == b2.st_ino); }